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Abstract. The Cosmic Microwave Background (CMB) is a snapshot of the Uni-
verse some 400,000 years after the Big Bang. The pattern of anisotropies in the
CMB carries a wealth of information about the fundamental parameters of cos-
mology. Extracting this information is an extremely computationally expensive
endeavor, requiring massively parallel computers and software packages capa-
ble of exploiting them. One such package is the Microwave Anisotropy Dataset
Computational Analysis Package (MADCAP) which has been used to analyze
data from a number of CMB experiments. In this work, we compare MADCAP
performance on the vector-based Earth Simulator (ES) and Cray X1 architec-
tures and two leading superscalar systems, the IBM Power3 and Power4. Our
results highlight the complex interplay between the problem size, architectural
paradigm, interconnect, and vendor-supplied numerical libraries, while isolating
the I/O filesystem as the key bottleneck across all the platforms.

1 Introduction

About 400,000 years after the Big Bang the expansion of spacehad cooled the Uni-
verse sufficiently for the charged electrons and protons to combine into neutral hydro-
gen atoms. At this point the primordial photons, which had been scattering off the free
electrons, were suddenly able to propagate undisturbed through space, carrying with
them a record of this moment which we call the Cosmic Microwave Background. The
details of this snapshot — tiny variations in the photons’ temperatures and polarizations
— are an exquisitely sensitive probe of the fundamental parameters of cosmology, and
measuring the detailed statistical properties of the CMB has been a high priority ever
since its serendipitous discovery in 1965. The challenge lies in the fact that the con-
tinued expansion of the Universe has reduced the mean temperature of the CMB from
around 3000K at last-scattering to only 3K today, and the anisotropies whose statistics
we want to determine are at the10−5 level in temperature, and anticipated to be at the
10−6–10−8 level in polarization.

Realizing the extraordinary scientific potential of the CMBrequires making precise
measurements of the microwave sky temperature over a significant fraction of the sky
at very high resolution. Such measurements are made by scanning the sky for as long
as possible with a cryogenically cooled telescope and as many microwave detectors as
possible. The reduction of the resulting datasets—first to apixelized sky map, and then



to an angular power spectrum—is a serious computational challenge, and one which is
only getting worse with increasing dataset sizes, as we try to make ever more precise
measurements. It is therefore critical to choose the optimal algorithmic approach and
supercomputing platform; one approach is the Microwave Anisotropy Dataset Compu-
tational Analysis Package (MADCAP) [1], which has been widely used on a variety of
supercomputers.

Until recently, CMB analyses were performed almost exclusively on superscalar
cache-based microprocessors, due to their generality, scalability, and cost-effectiveness.
However, for many classes of applications, these architectural platforms suffer from a
growing gap between their sustained performance and claimed peak capabilities. Re-
cently, two innovative parallel-vector architectures have become available to the super-
computing community: the Japanese Earth Simulator (ES) andthe Cray X1. In order to
quantify what these modern vector capabilities offer to scientists that rely on numerical
simulation and data analysis, it is critical to evaluate this architectural approach in the
context of demanding scientific computing algorithms [2–6]. Our research team was the
first international group to conduct a performance evaluation study of the Earth Simu-
lator, currently the world’s most powerful supercomputer [7]. As remote ES access is
not available, the study was performed during the authors’ visit to the Earth Simulator
Center located in Kanazawa-ku, Yokohama, Japan in December2003.

In this work, we compare MADCAP performance on the vector-based ES and X1
architectures and two leading superscalar systems, the IBMPower3 and Power4. Two
of the architectures studied, the X1 and Power4, were only available as relatively small
systems. This restricted the size of problem that we were able to use for the comparison
to the correspondingly small (15,000 pixel) CMB dataset from the MAXIMA balloon-
borne experiment [8] on at most 64 processors. However, MADCAP’s algorithmic de-
velopment has been targeted at analyzing much larger datasets on many more proces-
sors. In particular, the recent introduction of gang-parallelism has enabled the dominant
component of MADCAP—a set of independent dense matrix-matrix multiplications—
to achieve near perfect scaling for a 100,000 pixel dataset on 1024, 2048, 3072 and 4096
Power3 processors. The results here show that the overheadsassociated with imple-
menting this optimization negate most of the performance benefits for our experimental
data set. Our analysis highlights the complex interplay between the problem size, archi-
tectural paradigms, interconnect fabric, and vendor-supplied numerical libraries, while
isolating the I/O filesystem as the key bottleneck across thesuite of HPC platforms.

2 Architectural Platforms

Table 1 presents a summary of the architectural characteristics of the four supercom-
puters examined in our study. Observe that the vector systems are designed with higher
absolute performance and better architectural balance than the superscalar platforms.
The ES and X1 have high memory bandwidth relative to peak CPU (bytes/flop), al-
lowing them to continuously feed the arithmetic units with operands more effectively
than the superscalar systems in our study. Additionally, the custom vector interconnects
show superior characteristics in terms of measured latency[9, 10], point-to-point mes-
saging (bandwidth per CPU), and all-to-all communication (bisection bandwidth) — in
both raw performance (GB/s) and as a ratio of peak processingspeed (bytes/flop).



Table 1.Architectural highlights of the Power3, Power4, ES, and X1 platforms

PlatformCPU/ Clock Peak Mem BW Peak MPI Lat Netwk BW Bisect BW Network
Node(MHz) (GF/s) (GB/s) bytes/flop (µsec) (GB/s/CPU)bytes/s/flopTopology

Power3 16 375 1.5 0.7 0.47 16.3 0.13 0.087 Fat-tree
Power4 32 1300 5.2 2.3 0.44 12.0 0.06 0.012 Fat-tree
ES 8 500 8.0 32.0 4.0 5.6 1.5 0.19 Crossbar
X1 4 800 12.8 34.1 2.7 7.3 6.3 0.0881 2D-torus

The Power3 experiments reported here were conducted on the 380-node IBM pSeries
system running AIX 5.1 and located at Lawrence Berkeley National Laboratory. Each
375 MHz processor contains two floating-point units (FPUs) that can issue a multiply-
add (MADD) per cycle for a peak performance of 1.5 Gflop/s. Each SMP node consists
of 16 processors connected to main memory via a crossbar. Multi-node configurations
are networked via the SP Switch2 (Colony) switch using an omega-type topology. The
IBM distributed filesystem, GPFS, was used for all benchmarks. The filesystem was
configured with 16 GPFS servers (each 16 processor SMP nodes), each with 32GB of
main memory that can be used to cache files and metadata. The total size of the filesys-
tem was 30TB, with a block size of 256KB. In this model disk I/Ouses the switch
fabric, sharing bandwidth with message-passing traffic.

The Power4 experiments were performed on the 27-node IBM pSeries 690 system
running AIX 5.2 and operated by Oak Ridge National Laboratory (ORNL). Each 32-
way SMP consists of 16 Power4 chips (organized as 4 MCMs), where a chip contains
two 1.3 GHz processor cores. Each core has two FPUs capable ofa fused MADD per
cycle, for a peak performance of 5.2 Gflop/s. Our benchmarks were run on a system
employing the Colony interconnect. As in the Power3 case, GPFS was used for all
benchmarks. The filesystem was configured with 8 GPFS servers(each a 4 CPU 1.7GHz
Power4+) with 32GB of main memory. These servers support two2TB filesystems, both
with a block size of 256KB. The benchmarks utilized only one of these filesystems.

The 640 node ES runs enhanced Super-UX, a 64-bit Unix-based operating system.
Each SMP node contains eight processors with 16 GB of memory,and are connected
through a custom single-stage crossbar. The 500 MHz ES processor contains an 8-
way replicated vector pipe (vector length = 256) capable of issuing a MADD each
cycle, for a peak performance of 8.0 Gflop/s per CPU. For scalar instructions, the ES
contains a 500 MHz scalar processor. Like traditional vector systems, the ES vector
unit is a cache-less architecture; memory latencies are masked by overlapping pipelined
vector operations with memory fetches. Each group of 16 nodes has a pool of RAID
disk (720GB per node) attached via fiber channel switch. The filesystem used for our
experiments is NEC’s Supercomputer Filesystem (SFS), witha block size of 4MB. Each
node has a separate filesystem, in contrast to the other architectures studied.

All Cray X1 benchmarks were performed on a 256-MSP system (several reserved
for OS services) running UNICOS/mp 2.4 and operated by ORNL.The computational
core, called the single-streaming processor (SSP), contains two vector (vector length =
64) pipes running at 800 MHz, giving a 3.2 Gflop/s peak for 64-bit data. The SSP also

1 X1 bisection bandwidth is based on a 2048 MSP configuration



Fig. 1.The map and associated angular power spectrum of the part of the CMB sky measured by
the MAXIMA experiment, as calculated by MADCAP.

contains a superscalar processor running at 400 MHz. The multi-streaming processor
(MSP) combines four SSPs into one logical computational unit, sharing a 2MB data
Ecache, that allows extremely high bandwidth (25–51 GB/s) for computations with
temporal data locality. An X1 node consists of four MSPs sharing a flat memory, and
large system configurations are networked through a modified2D torus interconnect.
The X1 at ORNL has four nodes available for I/O processing; each node is connected
to a RAID array using fiber channel arbitrated loop protocol.Data transfer from a batch
MSP must travel over the interconnect to one of the I/O nodes.The filesystem used in
our study is a 4TB XFS filesystem, with a block size of 64KB.

3 MADCAP Overview

The analysis of a CMB dataset typically starts from the noise-dominated time-ordered
data, constructs a pixelized map of the observed region (typically with signal-to-noise
of around unity), and finally extracts the signal-dominatedtwo-point angular correlation
function, or power spectrum, of the CMB signal together withthe errors on this spectral
estimate (see Figure 1). The MADCAP approach is first to calculate the analytic maxi-
mum likelihood map and its residual pixel-pixel noise correlations, and then iteratively
estimates the maximum likelihood power spectrum and its fisher information matrix. In
this work we concentrate on the second step, which dominatesthe computational costs.

3.1 Methodology

The angular power spectrum is both a complete characterization of the CMB if its fluc-
tuations are Gaussian, and is the statistic which can most readily be predicted for candi-
date cosmological models. MADCAP recasts the extraction ofa CMB power spectrum
from a map of the sky into a problem in dense linear algebra, and exploits the ScaLA-
PACK [11] libraries for its efficient parallel solution. Thegoal is to maximize the Gaus-
sian log-likelihood of the datad (a pixelized sky map of dimensionNp) over all possible



power spectrum multipole coefficientsCl whereL(d|Cl) = − 1
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andD is the data correlation matrix
〈

ddT
〉

. In an ideal experiment, there would be an
independent coefficientCl for each multipole in the angular power spectrum. However,
because of finite beam size and incomplete sky coverage, the accessible multipoles are
instead grouped intoNb bins and a single coefficientCb is associated with each bin.

Using Newton-Raphson iteration to locate the peak of this log-likelihood requires
the evaluation of its first two derivatives with respect to the binned power spectrum coef-
ficients. First, the data correlation matrixD is constructed as the sum of the experiment-
specific noise correlationsN and the theory-specific signal correlationsS(Cb) – then a
square linear systemWb = D−1 ∂S

∂Cb

is solved for each of theNb spectral coefficients.
This is accomplished by inversion ofD and direct matrix-matrix multiplication. These
operations scale asNb N

3

p for a map withNp pixels. This number of pixels has pro-
gressively increased fromO(103) for the initial detection of CMB anisotropies by the
COBE satellite toO(104) – O(105) for the ensuing ground- and balloon-based exper-
iments, toO(106) – O(107) for the current WMAP and forthcoming Planck satellite
missions.

MADCAP achieves its highest performance when the data are dense on the pro-
cessors so that the communication overhead is minimized. With the advent of super-
computers with thousands of processors this was becoming harder to achieve for all
but the largest datasets. MADCAP has therefore recently been rewritten to exploit the
parallelism inherent in performingNb independent matrix-matrix multiplications. The
analysis is split into two steps: first, all of the processorscollectively build and invertD;
then, the processors are divided into independent gangs, each of which performs a sub-
set of the multiplications. Since the matrices involved areblock-cyclically distributed
over the processors, this incurs the additional overhead ofredistributing the matrices
between the two steps. Our results compare these single- andmulti-gang approaches.

3.2 Major Components

Each iteration of MADCAP’s power-spectrum extraction algorithm is divided into seven
steps. Table 2 presents an overview of the resource requirements. To maximize its abil-
ity to handle large datasets and many bins, MADCAP works withat most3N 2

p double
words of memory, which corresponds to supporting 3 matricesin memory concurrently.
The out-of-core disk-based storage for the other matrices in the calculation is the only
practical choice given the number of bins, but comes at the cost of heavy I/O. All ma-
trices are block-cyclic distributed across the processors; when a matrix is stored to disk
due to memory limitations, MADCAP generates one file per processor over which the
matrix is distributed. This results in matrix I/O operations that are independent, how-
ever the simultaneity of multi-processor disk accesses cancreate contention within the
I/O infrastructure, thus degrading overall performance.

(i) dSdC calculates each of the pixel-pixel signal correlation derivative matrices
dS/dCb. The elements of these matrices are weighted sums of the Legendre functions
Pl for each multipolel in bin b, evaluated for each pixel-pixel pair. HereNb distributed
matrices are output to disk. This step has high computational intensity on the super-
scalar architectures (over 7 flops/byte on the Power3/4), and medium on the vector
machines, see Section 3.3 for details.



Table 2. Computational requirements for each iteration of MADCAP’spower spectrum algo-
rithm, in terms of pixels (Np), bins (Nb), and multipoles (Nl)

Phase Disk RAM Flops
dSdC 8NbN

2

p 16N2

p O(NlN
2

p )
invD 8N2

p 16N2

p O(N3

p )
redist — 16N2

p —
W 8N2

p 24N2

p O(NbN
3

p )
dLdC 8Nb 8N2

p O(NbN
2

p )
fisher 8N2

b 16N2

p O(N2

b N2

p )
dC 8Nb 8N2

b O(N3

b )

Total 8(Nb + 2)N2

p 24N2

p O((Nb + 1)N3

p )

(ii) invD calculates the full (symmetric positive definite) pixel-pixel data corre-
lation matrix asD = N +

∑

b CbdS/dCb, explicitly inverts it using the ScaLA-
PACK pdpotrf andpdpotri routines, and performs the matrix-vector multiplica-
tion z = D−1d (whered is the data vector, the pixelized sky map) using the ScaLA-
PACKpdsymv routine. This step has an intermediate computational intensity of around
1.7 flops/byte. For our benchmarks we perform only the initial iteration in whichCb =
0, so that thedSdCb matrices do not actually need to be read in; this routine thenreads
and writes one matrix.

(iii) redist, one by one, reads each of thedS/dCb matrices and theD−1 matrix,
which are block-cyclic distributed across all of the processors, block-cyclic redistributes
them using thepsgemr2d routine, and rewrites them over one gang’s worth of proces-
sors. This step performs no calculations per se, but is a set of data gathers by the group
of processors in one gang from all other processors, stressing both memory bandwidth
and system interconnect.

So far, all the processors have worked on the same step of the code (single-gang
mode), since these operations are inherently sequential. The next steps may be per-
formed in multi-gangmode. Note thatredist step re-maps the data from single- to
multi-gang mode and is not performed for single-gang MADCAPcalculations.

(iv) W performs the multiplicationWb = D−1dS/dCb for a given bin using the
pdgemmroutine. (AlthoughD−1 and dS/dCb are both positive definite symmetric
matrices,dS/dCb may have significant block structure which we can exploit by using
pdgemmto multiply just the appropriate non-zero blocks, rather than usingpdsymm
on the whole matrices.) Depending on the amount of data per processor, intermediate
to high computational intensity is required. This step requires each gang to readD−1

and its subset of thedS/dCb matrices, and write the resultingWb matrices.
(v) dLdC calculates thebth element of the log-likelihood derivative vector using

pdgemv, dL/dCb =zT Wbd − Trace(Wb), since theWb matrices are not symmetric.
Each gang performs this multiplication for its subset of thebins. Matrix-vector multiply
is of relatively low computational intensity, requiring anarchitectural balance between
memory subsystem and peak arithmetic speed to achieve high performance.dLdC re-
quires matrix input (Wb) but has no matrix output requirements.

(vi) fisher computes thebth column of the bin-bin fisher matrix by first reading and
transposingWb, followed by readingW ′

b for all b′ > b and calculating the trace as the



sum over all matrix element pair products:Fbb′ = Trace(WbW
′

b) . For the case where
the number of bins exceeds the number of gangs, this step is load-balanced by giving
each gang both a low and high numbered bin. In the case where number of gangs equal
to the number of bins, there is an inherent load imbalance. The gang that processes the
first bin will take on the order ofNb longer than the gang that processes the last bin.
This step has low computational intensity, the main computational work being BLAS1;
it has heavy I/O requirements, readingNb(Nb + 1)/2 matrices.

(vii) dC calculates the correctiondCb = F−1

bb′ dL/dC′

b using Cholesky decomposi-
tion of F and triangular solve. The number of bins is small enough that this is a simple
serial code using thedposv anddpotri routines. We do not present an analysis of
thedCphase, as it requires a trivial amount of runtime.

3.3 Vectorization

Most of the MADCAP routines utilize the ScaLAPACK library, making code migration
a relatively simple task. Performance for both scalar and vector systems depends heavily
on an efficient implementation of the vendor-supplied linear-algebra libraries. However,
explicit vectorization was required for the hand-codeddSdCroutine. The basic struc-
ture of thedSdCroutine loops over all pixel pairs, calculating the value ofLegendre
polynomials up to some preset degree for the angular separation between these pixels.
On superscalar architectures this constituted a largely insignificant amount of work, but
due to the recursive computation, vectorization was prevented—resulting in significant
overheads on the ES and X1. This routine was therefore rewritten so that at each itera-
tion of the recursion a large batch of angular separations was computed in an inner loop.
Compiler directives were required to ensure vectorizationfor both vector architectures.
For our test case a speedup of approximately 10X and 30X were recorded on the ES
and X1 respectively, bringing back a performance balance similar to the superscalar
architectures.

3.4 Experimental Data

The data used in our experiments was collected by MAXIMA [8] (Millimeter Anisotropy
eXperiment Imaging Array): a balloon-borne millimeter-wave telescope designed to
measure the angular power spectrum of fluctuations in the CMBover a wide range
of angular scales. MAXIMA has an unprecedented combinationof sensitivity, angular
resolution, and control of systematic effects. The experiment consists of a 1.3 m diam-
eter off-axis Gregorian telescope and a receiver with a 16 element array of bolometers
cooled to 100 mK. The high sensitivity of this receiver allows accurate measurements
of the CMB power spectrum in a single overnight balloon flight. Each of the detectors
in the array is sensitive to a single frequency band centeredat 150, 240, or 410 GHz.
The 150 GHz band is the most sensitive to the CMB and is close infrequency to the
predicted minimum in galactic foregrounds. The higher frequency channels monitor
emission from the atmosphere and galactic foregrounds suchas dust.



4 Results

Our experiment used a dataset of 14996 pixels (Np), 16 bins (Nb), and 1200 multipoles
(Nl). We explore both single-gang (SG) runs, where all processors participate in each
step of the calculation, and multi-gang (MG) runs, where gangs of processors carry
out theNb W, dLdC, andfishersteps concurrently. For each architecture we perform
SG calculations using both 16 and 64 processors (SG processor counts are restricted to
squared integers). The MG implementation depends on fast file-level synchronization
across tasks. As the ES architecture provides this via MPI-IO or vendor-specific API
(currently not utilized in MADCAP) and our short stay at the ES Center prevented
code re-engineering, no MG experiments were performed. Forall other architectures
we performed MG calculations using 16, 32, and 64 processorswith 4, 8, and 16 gangs
of 4 processors respectively.

Tables 3-8 present a performance breakdown of MADCAP’s five key steps. To dis-
tinguish between computational overhead and I/O requirements, we present two sets of
runtime data (RT) for each experiments: the overall time (inwall-clock seconds); and
the computational costs, without accounting for I/O operations and barrier wait times
caused by I/O imbalance. For the ES, we were unable to measurethe I/O and barrier
times, so only the overall time is shown; we plan to gather these measurements on our
next visit to the ES center. In addition, the parallel efficiencies (PE) of scaling from 16
to 64 processors are shown (P=32 is also presented for the MG case). Finally, we show
the percentage of time each step accounts for in the overall MADCAP simulation (OT).

Recall that fordSdC, the SG and MG configurations are equivalent (exactly the
same code is executed in both cases). We expect good scaling for this step, since it is
embarrassingly parallel: The pixel map is divided amongst the processors and correla-
tion matrix is computed independently, pixel by pixel. As the per-processor data density
decreases at higher concurrencies, we expect to see a slightperformance degradation
due to loop overhead and decreased vector lengths.

Table 3 presentsdSdCresults, showing that the ES achieves the fastest raw perfor-
mance, approximately 5x, 3.5x, and 2x faster than the Power3, Power4, and X1 respec-
tively. For the Power3 and ES systems we see excellent speedup, but for the Power4
and X1 this is not the case. On further investigation, we determined that the main cause
of slowdown was increased I/O time for writing out the matrix. Both the Power4 and

Table 3.Performance ofdSdCusing single-gang (SG) and multi-gang (MG): in runtime seconds
(RT), parallel efficiency (PE), and as percentage of MADCAP’s overall runtime (OT)

dSdC Total overhead Computation only
Power3 Power4 X1 ES Power3 Power4 X1

P metric
SG MG SG MG SG MG SG SG MG SG MG SG MG

16 RT 743 746 375 371 179 190 156 716 714 339 339 171 174

RT — 373 — 199 — 97 — — 359 — 172 — 9332
PE — 100% — 93% — 98% — — 100% — 98% — 94%

RT 188 187 130 131 72 72 37 180 180 86 86 49 49
64 PE 99% 100% 72% 70% 63% 66% 105% 100% 99% 98% 98% 88% 88%

OT 7% 7% 6% 6% 8% 9% 4% 7% 7% 10% 11% 13% 12%



Table 4.Performance ofinvD using single-gang (SG) and multi-gang (MG): in runtime seconds
(RT), parallel efficiency (PE), and as percentage of MADCAP’s overall runtime (OT)

invD Total overhead Computation only
Power3 Power4 X1 ES Power3 Power4 X1

P metric
SG MG SG MG SG MG SG SG MG SG MG SG MG

16 RT 395 389 141 141 71 78 74 378 373 130 132 69 72

RT — 213 — 90 — 52 — — 204 — 81 — 4432
PE — 91% — 78% — 75% — — 91% — 81% — 82%

RT 131 131 77 70 81 80 22 126 125 67 62 71 75
64 PE 75% 74% 46% 50% 22% 24% 84% 75% 74% 49% 53% 24% 24%

OT 5% 4% 4% 3% 9% 10% 2% 5% 5% 6% 6% 14% 13%

X1 systems have global filesystems with compute nodes havingno direct connections
to the I/O subsystem. We would expect to see some contention when increasing the
number of I/O streams above a certain level, and this effect is most likely the reason for
the slowdown. On removing the I/O time from the comparison the efficiency increases
markedly, in line with our expectations.

For invD, we expect some slowdown on increasing the processor count,due the the
decreased ratio of computation to communication; performance is presented in Table 4.
As in dSdC, we note that the ES has the best parallel efficiency and absolute perfor-
mance. Similarly, the Power3 has the second best efficiency,and is also the architecture
where I/O scaling has the least impact. The Power4 and X1 bothscale poorly, and re-
moving I/O does not improve performance. For the Power4, we are comparing results
between 16 processors (a half-populated SMP node) and 64 processors (two full SMP
nodes), where the former case involves no intra-node communication and has twice the
memory bandwidth per processor than in the latter case. For the X1, the scaling does
not seem related to I/O, nor to the vector length (which remains similar going from 16
to 64 processors) — this issue is currently under investigation.

Therediststep, presented in Table 5 taxes both memory bandwidth and interconnect
efficacy. In addition, any low-level support for strided gathers and the ability of the
ScaLAPACK to effectively use these features will also affect performance. Observe
that this operation is fastest on the X1, while slowest on thePower4. However, since

Table 5.Performance ofredistusing single-gang (SG) and multi-gang (MG): in runtime seconds
(RT), parallel efficiency (PE), and as percentage of MADCAP’s overall runtime (OT)

redist Total overhead Computation only
Power3 Power4 X1 ES Power3 Power4 X1

P metric
SG MG SG MG SG MG SG SG MG SG MG SG MG

16 RT 0 461 0 280 0 254 0 0 456 0 273 0 252

RT — 366 — 409 — 185 — — 360 — 400 — 18432
PE — 63% — 34% — 69% — — 63% — 34% — 69%

RT 0 222 0 296 0 186 0 0 217 0 289 0 185
64 PE — 52% — 24% — 26% — — 53% — 24% — 34%

OT 0% 6% 0% 13% 0% 23% 0% 0% 9% 0% 23% 0% 30%



Table 6. Performance ofW using single-gang (SG) and multi-gang (MG): in runtime seconds
(RT), parallel efficiency (PE), and as percentage of MADCAP’s overall runtime (OT)

W Total overhead Computation only
Power3 Power4 X1 ES Power3 Power4 X1

P metric
SG MG SG MG SG MG SG SG MG SG MG SG MG

16 RT 8501 7847 3176 2818 958 906 1345 7928 7474 2865 2582 791 693

RT — 4052 — 1811 — 537 — — 3753 — 1531 — 41332
PE — 97% — 78% — 84% — — 100% — 84% — 84%

RT 2204 2029 1173 930 421 280 357 2066 1873 972 727 323 207
64 PE 96% 97% 68% 76% 57% 81% 94% 96% 100% 74% 89% 61% 84%

OT 79% 56% 53% 41% 48% 34% 37% 79% 81% 89% 72% 74% 41%

the X1 is has significantly higher peak performance than the superscalar systems in
our study,redistaccounts for a significant fraction of the X1’s overall time (23%), and
shows little parallel efficiency (26%). The cost of this stepis vital to the success or
failure of the multi-gang strategy: If it is too high, we willnot recoup the loss via faster
matrix-matrix multiplies in stepW.

Before discussing the following set of results, we note thatclose to perfect parallel
efficiency is expected for the multi-gang experiments. In both the 16 and 64 proces-
sor experiments, the computations and matrix distributions are identical — the only
difference being that in the 64-way run, four matrix-matrixmultiplies are performed
concurrently. Table 6 shows the performance ofW on our suite of architectural plat-
forms. Observe that, as expected, the MG strategy reduces the overhead ofW in all test
cases when compared with the SG approach. The Power3 performs the closest to ideal
scalability, particularly when I/O times are removed. Thisis followed by the Power4
and the X1. Note, however, that significant variability was seen in the X1’s I/O perfor-
mance, sometime by up to a factor of 4x. Observe that the X1 hasthe faster MG raw
performance, achieving a 4.8x speedup over the Power3; however, it is also important
to recall that the X1 is 8.5x faster in peak compared with the Power3.

For thedLdCstep, shown in Table 7, we again expect high efficiency in MG mode.
However, unlike stepW, dLdC is dominated by I/O processing. The resulting compu-
tation-only runtimes are too small to clearly see the benefits of multi-gang parallelism,

Table 7.Performance ofdLdCusing single-gang (SG) and multi-gang (MG): in runtime seconds
(RT), parallel efficiency (PE), and as percentage of MADCAP’s overall runtime (OT)

dLdC Total overhead Computation only
Power3 Power4 X1 ES Power3 Power4 X1

P metric
SG MG SG MG SG MG SG SG MG SG MG SG MG

16 RT 284 276 111 132 95 86 166 15 19 7 9 5 1

RT — 141 — 81 — 51 — — 10 — 9 — 232
PE — 98% — 81% — 85% — — 98% — 48% — 37%

RT 73 71 62 78 87 52 48 8 4 5 5 6 9
64 PE 98% 98% 45% 42% 27% 42% 86% 50% 121% 34% 46% 20% 4%

OT 3% 2% 3% 3% 10% 6% 5% 3% 3% 5% 6% 15% 8%



Table 8.Performance offisherusing single-gang (SG) and multi-gang (MG): in runtime seconds
(RT), parallel efficiency (PE), and as percentage of MADCAP’s overall runtime (OT)

fisher Total overhead Computation only
Power3 Power4 X1 ES Power3 Power4 X1

P metric
SG MG SG MG SG MG SG SG MG SG MG SG MG

16 RT 1361 1719 936 853 291 47 1442 591 489 125 104 63 28

RT — 863 — 699 — 21 — — 223 — 61 — 1532
PE — 100% — 61% — 109% — — 110% — 86% — 93%

RT 589 880 653 694 85 16 416 383 72 149 38 47 10
64 PE 58% 49% 36% 31% 86% 73% 87% 39% 170% 21% 69% 33% 71%

OT 21% 24% 30% 31% 10% 2% 44% 21% 16% 49% 38% 15% 2%

except perhaps for the Power3. The total overhead times are influenced strongly by the
ability of the filesystem to handle concurrent streams of I/Owithout loss of efficiency.

Results for thefisherstep are shown in Table 8. As previously mentioned in Sec-
tion 3.2, the 64-way MG experiment is inherently load imbalanced, due to the equal
number of gangs and bins (16); thus, we expect poor scalability when comparing with
the 16 processors simulation. For the Power3 and Power4, I/Oaccounts for a significant
fraction of the runtime, while the X1 shows negligible I/O effects. In terms of runtime,
the ES achieves surprising poor performance, almost five times slower than the X1 for
the SG case — we plan to investigate this issue during our nextvisit to the ES Center.

5 Summary and Conclusions

Table 9 summarizes our findings by putting together all of MADCAP’s components. We
find that the X1 has the best runtimes: 1.1x, 2.8x, and 4.4x faster than the ES, Power4,
and Power3 respectively; however, it suffers the lowest parallel efficiency. The ES and
Power3 demonstrate the best scalability, significantly higher than the Power4 and X1.
The Power3 shows the highest percentage of peak, followed bythe ES, X1, and Power4;
it is also the only architecture where the multi-gang strategy pays off for this dataset.

Our in-depth analysis of the performance of the MADCAP package demonstrates
the complex interplay between the architectural paradigms, interconnect technology,

Table 9.OverallMADCAPperformance using single-gang (SG) and multi-gang (MG): inruntime
seconds (RT), parallel efficiency (PE), MFlop/s per CPU (MF/s/P), and percentage of peak .

MADCAP Total overhead Computation only
Power3 Power4 X1 ES Power3 Power4 X1

P metric
SG MG SG MG SG MG SG SG MG SG MG SG MG

16 RT 11400 11522 4814 4646 1710 1672 3269 9688 9547 3506 3455 1171 1285

RT — 6088 — 3344 — 1058 — — 4924 — 2272 — 81632
PE — 95% — 69% — 79% — — 97% — 76% — 79%

RT 3266 3606 2196 2264 873 823 954 2795 2492 1319 1240 567 624
64 PE 87% 80% 55% 51% 49% 51% 86% 87% 96% 66% 70% 52% 52%

MF/s/P 542 491 807 782 2029 2153 1857 634 711 1343 1429 3127 2840
% peak 36% 33% 16% 15% 16% 17% 23% 42% 47% 26% 27% 24% 22%



and I/O filesystem. These design tradeoffs play a key role in algorithmic design and sys-
tem acquisitions. Preliminary multi-gang parallel optimization has previously demon-
strated high sustained performance for large problem sizesat extremely high concur-
rencies. However, for our experimental data set and limitedprocessor count, little or no
benefit was attained on a broad spectrum of supercomputers when using this optimized
approach. Additionally, all evaluated architectural platforms sustained a relatively low
overall fraction of peak, considering MADCAP’s extensive use of computationally in-
tensive dense linear-algebra calculations. Future work will examine higher-scalability
simulations across a broad range of supercomputing systems, where we expect to cross
the break-even point where multi-gang parallelism confersa clear performance advan-
tage. We also plan investigate MADCAP’s data transpositions and I/O transfer require-
ments in more detail, with the goal of reducing the impact of these overheads.
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